تصحیح خودکار غلط های تایپی فارسی به کمک شبکه عصبی مصنوعی ترکیبی

Authors

  • دژکام, رسول
  • شاهمیری, امیرشهاب
  • صفابخش, رضا صفابخش
Abstract:

Automatic correction of typos in the typed texts is one of the goals of research in artificial intelligence, data mining and natural language processing. Most of the existing methods are based on searching in dictionaries and determining the similarity of the dictionary entries and the given word. This paper presents the design, implementation, and evaluation of a Farsi typo correction system using the Hopfield and multilayer perceptron (MLP) neural networks.The results show that for learning a dictionary of 4 to 256 words of 4 to 6 characters, the correction accuracy of the Hopfield network is 55% to 100% and for the multilayer perceptron 80% to 100%. The hybrid network can achieve a correction accuracy of 80% to 100% for over 3000 words.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تولید خودکار دادگان آزمون به کمک شبکه عصبی

چکیده یکی از مراحل مهم آزمون نرم‌افزار شئ‌گرا، آزمون مستقل اشیا است.آزمون مستقل اشیا با دو مشکل روبه‌رو است: اولاً شئ مورد فراخوانی ممکن استروش‌هایی از اشیا دیگر را فراخوانی کندودر نتیجهبررسیمستقلآن ممکن نباشد. ثانیاً روش‌های فراخوانی شده ممکن است زمان‌بر باشند و باعث شوندآزمون شئ مورد نظر طولانی شود. یک راه‌حل برای رفع دو مشکل فوق، استفاده از اشیا جاعل است. اشیا جاعل روش-های مورد فراخوانی را شب...

full text

تشخیص خودکار خوشه های میکروکلسیفیکاسیون به کمک تبدیل موجک و شبکه های عصبی

در این مقاله، یک سیستم CAD به منظور شناسایی و تشخیص خوشه های میکروکلسیفیکاسیون در تصاویر ماموگرافی معرفی شده است. الگوریتم معرفی شده مرکب از سه مرحله اساسی است. در مرحله اول، تبدیل موجک روی تصاویر ماموگرافی اعمال شده و دو ضریب موجک به همراه دو ویژگی آماری به عنوان ویژگی های متمایز کننده پیکسل ها از نظر تعلق به یک دانه میکروکلسیفیکاسیون استخراج می گردد. سپس با استفاده از یک شبکه عصبی، دسته بندی ...

full text

تولید خودکار دادگان آزمون به کمک شبکه عصبی

چکیده یکی از مراحل مهم آزمون نرم افزار شئ گرا، آزمون مستقل اشیا است.آزمون مستقل اشیا با دو مشکل روبه رو است: اولاً شئ مورد فراخوانی ممکن استروش هایی از اشیا دیگر را فراخوانی کندودر نتیجهبررسیمستقلآن ممکن نباشد. ثانیاً روش های فراخوانی شده ممکن است زمان بر باشند و باعث شوندآزمون شئ مورد نظر طولانی شود. یک راه حل برای رفع دو مشکل فوق، استفاده از اشیا جاعل است. اشیا جاعل روش-های مورد فراخوانی را شبی...

full text

بهبود عملکرد الگوریتم خوشه‌یابی خودکار تصاویر رنگی به کمک پیش‌پردازش با شبکه عصبی خودسامانده (SOM)

با توجه به کاربرد فراوان مسئله خوشه‌یابی داده‌ها به‌عنوان یکی از مسائل مهم در مبحث بازشناسی الگو، زمینه‌های تحقیقاتی متنوعی از جمله خوشه‌یابی تصاویر به این موضوع اختصاص یافته است. اکثر روش‌های مطرح‌شده برای حل مسئله خوشه‌یابی تصاویر، مبتنی بر الگوریتم‌های هوش‌جمعی می‌باشد. با توجه به حجم بالای داده ورودی در این الگوریتم‌ها (برابر تعداد پیکسل‌های تصویر)، زمان محاسباتی زیادی صرف حل مسئله می‌شود ب...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  16- 29

publication date 2008-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023